为了更好的体验,请使用竖屏浏览
2024年11月23日 安徽曼欣达医疗科技有限公司 欢迎您的访问!

智能医疗影像诊断系统“现实很骨感”
发布日期:2017-06-04 浏览次数:2433

2017年以来,关于人工智能泡沫的议论纷纷攘攘,知乎上一问题“这一波人工智能泡沫将会怎么破灭?”获广泛关注,其中,禀临科技联合创始人PENG Bo的观点得最高赞同票,他认为,“人工智能有些危险,因为现在变现似乎是个难题。”“目前看来,AI可能并不足以支撑一个独立的公司,它更适合作为其它公司的一个部门,或被其它公司收购。”


许多智能影像一线从业者可能会对其观点深表赞同。科大讯飞智慧医疗事业部医疗影像产品负责人马文君告诉记者,“如今的智能影像很像前几年的互联网医疗,大家一窝蜂进来了,但下一步怎么做,是个问题。”汇医慧影梁恩铨认为,“整体来讲,智能影像诊断真正深入到临床诊断的很少,目前,业内尝试与医生合作做科研或提高效率方面尝试,但要真正提高诊断率,目前还有很大差距。”


动辄可以听到“AI取代医生”“AI的准确率超过医生”的言论,同时“理想很美好,现实很骨感”的感慨频频传来,理想的豪言壮语随处可见,那现实是什么呢?


有人说,21世纪是数据为王的时代;有人将算法比作发动机,数据比作石油;有人则强调行业数据、专家资源和核心技术是打造智能影像缺一不可的三要素。无论怎样强调数据的重要性都不为过,我们且以影像数据为径,智能影像公司的运营为纬,一窥智能影像公司的真实日常。


智能医疗影像诊断系统“现实很骨感”


数据端:保证质量,数量多多益善


尽管我国存在第三方影像中心,但绝大多数的医疗影像数据来源于医院。据悉,大的三甲医院一年产生的影像数据在10T以上。宜远智能CEO吴博称,“单个医院的影像数据存量就很大,每天数百例新增也很常见。”


在医疗信息系统中,PACS系统负责医疗影像采集、数据传输存储以及影像分析、处理,并且不同的PACS系统之间,能以以DICOM国际标准方式对接。


总体来说,医院影像数据多且大都标准化,便于机器阅读,为此,智能医疗影像被业内人认为将率先实现商业化落地。


上海市儿童医院影像科主任杨秀军曾表示,“很多医学影像领域特别适合人工智能/图像识别技术,国内外有很多厂商从事这方面,也做出一些成果。”


吴博告诉记者,对于AI ,影像数据本身具有标准化的优势。不过,数据异常也容易碰到。“以CT为例,有的病人不是躺着而是趴着扫描;有的不是头先进去而是脚先进去;CT长宽512像素或者768像素的差别,不同排数机器的层厚差异以及薄层重构算法,都会影响清晰度。”他补充道,“处理流程只要充分考虑和兼容这些变化情况,原始数据的可用比例还是非常高的。”


对于一个AI系统而言,数据多多益善是有前置条件的,在保证喂养数据质量的情况下,增加数量才有意义。而判断影像数据质量,主要取决于AI公司所打造智能诊断产品的临床目的。除此之外,对于智能影像诊断而言,影像数据需要关联更准确的诊断和后期结果关联,否则垃圾进,垃圾出。


南方医科大学副教授刘再毅曾表示,“我们数据多得不得了,我们影像科每天产生很多数据,但是有多少数据可以用?1%都不到,其中有大量错误信息。”他补充道,“数据规范的问题没有办法管控,临床信息经常有误。”


拿现在很火的肺结节智能诊断为例,对于AI公司来说,有肺结节的影像才是有价值的,“在产生的影像数据中,只有10%或20%的病人有问题,即便如此,并不是所有有病灶的影像数据都能拿来用。”梁恩铨称。而在医院内部,医学影像系统和诊断报告是两个独立的系统,两者并无关联。“用数据训练AI很重要的一点是:需要系统判断一个影像是否有结节,是否有病灶。而医院每天拍出来几百影像,并没有标出来哪里有结节,对于AI公司来说,这就是没有价值的数据。”梁恩铨告诉记者。